

A Three-Dimensional Array for the Study of Infrasound Propagation through the Atmospheric Boundary Layer

Madelon Smink, Jelle Assink, Läslo Evers en Fred Bosveld

Infrasound - Low Frequency Sound

- Sound waves with frequencies below 20 Hz
- Low attenuation
- Propagating over large distances

Sources:

- Natural sources, e.g. volcanic eruption, avalanches, meteors, aurora, etc.
- Anthropogenic sources: (nuclear) explosions, sonic boom

Microbarometers

- Sensitive to both gravity waves and infrasound
- Sensitive to variations from several 10² Pa to 10⁻² Pa.
- High resolution pressure measurements

Microbarometers

C_{app.}

Ca

- Microbarometers generally ground-based
- Unique three-dimensional Infrasound Array at Cabauw
- Sensitivity to atmosphere

Influence Boundary layer on propagation

- Clear event of nearby explosion
- Amplitudes larger than noise levels

Atmospheric models

HIRLAM, HARMONIE and ECMWF

Influence of small scale variations on wavefront arrivals and ray paths

Influence of atmosphere

Local wind conditions determine the noise conditions near an infrasound microbarometer and therefore the detectability

Tower and Ground Observations

Difference in noise periods and levels in ground and tower microbarometers

Wind noise

- Dominant source noise: intrinsic pressure fluctuations due to air turbulence interactions
 - Turbulence turbulence interaction pressures
 - Turbulence shear interaction pressures
- **Stagnation pressure**: interaction of bluff body with wind. Effect of measurement setup

Understanding the data: stagnation and intrinsic pressure

• Estimating stagnation pressure (from Bernoulli's equation):

$$P_{\text{stag}} = \frac{1}{2}\rho u^{2}$$

$$P'_{\text{stag}} = P_{\text{stag}} - \overline{P_{\text{stag}}} = \rho \overline{u} u' + \frac{1}{2}\rho u'^{2} - \frac{1}{2}\rho \overline{u' u'}$$

$$P'_{\text{stag}} \approx \rho \overline{u} u' \longrightarrow \sigma_{\text{Pstag}} \approx \rho \overline{u} \sigma_{u}$$

Assuming that velocity = 0 at stagnation point

• Estimating intrinsic pressure: Beginning with Navier Stokes (George et al. 1984)

$$\frac{1}{\rho} \nabla^2 P_{\text{intr}} = -\frac{\partial u_i \partial u_j}{\partial x_i \partial x_j}$$

Complicated to solve, estimated by:

$$\sigma_{\rm Pintr} \approx \rho \sigma_u^2$$

Stagnation, intrinsic, microbarometer pressure

Approached stagnation and intrinsic pressure compared to the tower microbarometer data and tower data, using the high resolution sonic anemometers.

Tower

Work in progress

- Focussing on flow conditions and its influence on the suppression of stagnation pressure:
 - Using wavenumber spectra (with power law theories)
 - -7/3 power law for turbulence- turbulence interaction
 - -5/3 power law stagnation (from Kolmogorov's energy spectrum)
 - Understand flow around cylinder, flow separation and wake forming
- Apply corrections or improving stagnation pressure reduction systems.
- Comparing coherency between tower measurements

Conclusion points

- Understand noise in infrasound measurements, to improve future microbarometer array locations
- What processes cause the noise
 - Intrinsic pressure
 - Stagnation pressure
- Understanding influence of noise reduction system and uncertainties in the influence of the stagnation pressure (velocity ≠ 0)

Thank you!

A THE OWNER WAT

ALL DESCRIPTION OF ALL DESCRIPTI

and the state

Suppressing wind noise

 Noise filtering: Porous hoses for sampling and averaging over a larger area

Ground: spider shape Tower: surrounding tower

 Cancelling incoherent small scale wind fluctuations

Comprehensive Nuclear-Test-Ban Treaty Organisation (CTBTO)

International Data Centre, CTRTO PrepCo

Influence of atmosphere

• Infrasound propagation depends on wind and temperature conditions

