New sensing methods within the TWIGA project

Nick van de Giesen n.c.vandegiesen@tudelft.nl

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

TWIGA Partners

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

TWIGA Project

TWIGA

*

TWIGA Service Sectors

Global Earth Observation System of Systems

Value Chain Approach for all Services

TUDelft

TWIGA

TWIGA activities and partners

TUDelft

Distributed Temperature Sensing Soil Moisture

Steele-Dunne et al., 2010

DTS Soil Moisture

A

UDelft

Position cable (yellow line). A: Place where DTS apparatus and cold/warm calibration baths will be placed. B: Place where end-point calibration bath will be installed. Location: https://www.google.com/maps/@6.6908106.-1.517288.400m/data=!3m1!1e3

Distributed Temperature Sensing Soil Moisture

TUDelft

UAVs Soil Moisture

fUDelft

SAR Soil Moisture

Intervalometer Rainfall

Intervalometer Rainfall

 10 intervalometers, 1 acoustic disdrometer, 2 TB

∀ TUDelft

Didier de Villiers Intervalometer Rainfall

Didier de Villiers Intervalometer Rainfall

Delft

PMF of drop counts drops per 10s for Disdro @ PolePole for storm 21 and data start 12, dispersion = 1.0

Didier de Villiers Intervalometer Rainfall

Delft

- 31/413 rainfall patches are classified as Poissonian!
- Mean Dispersion (Poisson) = 1.12
- Mean Dispersion (Non Poisson) = 1.75
- Mean Drop Arrival = 1.00 drops per 10s
- Mean Drop Arrival = 1.98 drops per 10s

Didier de Villiers Intervalometer Rainfall

Didier de Villiers Intervalometer Rainfall

∀ TUDelft

Jan-Jaap Pape (UU) Intervalometer Rainfall

TUDelft

Intervalometer / Disdrometer Rainfall

TUDelft

Kumasi Hackathon

Kumasi Hackathon Plastic spectrometer

TUDelft

Kumasi Hackathon Irrigation advice

Ŋ

TUDelft

Kumasi Hackathon Particles / LoRa

AS3935 - Lightning

Article

Delft

Potential of Cost-Efficient Single Frequency GNSS Receivers for Water Vapor Monitoring

Andreas Krietemeyer ^{1,*}^(D), Marie-claire ten Veldhuis ¹^(D), Hans van der Marel ¹ Eugenio Realini ²^(D) and Nick van de Giesen ¹^(D)

- ¹ Faculty of Civil Engineering, TU Delft, 2628 CN Delft, The Netherlands; J.A.E.tenVeldhuis@tudelft.nl (M.-c.t.V.); H.vanderMarel@tudelft.nl (H.v.d.M.); N.C.vandeGiesen@tudelft.nl (N.v.d.G.)
- ² GReD—Geomatics Research & Development srl, 22074 Lomazzo (CO), Italy; eugenic
- * Correspondence: A.Krietemeyer@tudelft.nl

Received: 17 August 2018; Accepted: 13 September 2018; Published: 18 September 2018

GNSS / Precipitable Water Vapor

New sensing methods within the TWIGA project

Nick van de Giesen n.c.vandegiesen@tudelft.nl

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

This project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No.776691. The opinions expressed in this presentation are of the authors only and no way reflect the European Commission's opinions. The European Union is not liable for any use that may be made of the information.

