

 faculty of science and engineering

Verification of CH₄ and N₂O emissions using UAV-based measurements

Huilin Chen¹, Truls Andersen¹, Katarina Vinkovic¹, Xin Tong¹, Marcel de Vries¹, Bert Kers¹, Wouter Peters^{1,2}, Arjan Hensen³, Arnoud Frumau³, Fred Bosveld⁴, Jarek Necki⁵, Justna Swolkien⁵, Anke Roiger⁶, Malika Menoud⁷, Thomas Röckmann⁷

¹RUG; ²WUR; ³TNO, ⁴KNMI, ⁵AGH; ⁶DLR, ⁷UU

faculty of science and engineering

Climate Change and Ozone depletion

What is the *magnitude* of GHG emissions? What *mechanisms/processes* control these emissions?

Unmanned Aerial Vehicle (UAV)

Also known as Remotely Piloted Aircraft Ssystem (RPAS) or Drones

Inspire 1 (x 2)

- ~15 minutes flight
- Drone weight 2.9 kg
- Maximum takeoff 3.5 kg
- In practice 4.0 kg

Inspire 2 (x 1)

- ~30 minutes flight
- Drone weight 3.5 kg
- Maximum takeoff 4.3 kg

Ruisdael purchase: payload heavier than 1kg *

UAV-based active AirCore Approach

- AirCore tubing:
 - 1/8" OD. 0.005" WT
 - 50 m (165 ft)
 - 450 g (1 lb)
 - 350 mL air volume
- Sampling time: 15 min at 21 mL/min
- Flow varies a bit proportional to the ambient pressure
- Total weight: ~ 1.0 kg (~ 2.2 lbs)

UAV AirCore flight Lutjewad

Andersen et al., 2018

Field measurements

- 1. CH₄, CO₂, and CO mole fraction profiles, recently N₂O and COS
- 2. δ^{13} C and δ^{2} H in CH₄ measurements of collected air samples from drone flights
 - 3. Ground-level u, v; profiles T, RH, u and v from a lightweight radiosonde

Application I: Quantifying dairy farm methane emissions

- Bottom-up inventory Netherlands 2010
 - 48% cattle & manure
 - 26% oil & gas
- Grijpskerk, Netherlands

- 280 adult cows + 140 young cows
- Manure storage underground
- Measurement dates
 - March 27, 2017
 - May 3, 2018
 - March 29, 2019

Example flight track March 2017

Wind speed: 4.5 m s⁻¹

The mass balance approach

Application II: Quantifying coal-mining shaft emissions

- Global coal mining emissions 41 (26 50) Tg CH₄ yr⁻¹ (bottom-up)
- Europe's emissions 28 (22 34) Tg CH₄ yr⁻¹ (top-down)

[Saunois et al.. 2016]

According to bottom-up emissions:

Silesia coal mining-related CH₄ emissions ~0.5 Tg/yr.

- 1.2% of global coal mining emissions
- 1.7% of Europe's emissions
- ~2.5 million cows

Quantifying coal-mining shaft emissions

2017 (14 flights) 2018 (59 flights)

Pniowek V

Inventory: 20.6 kton CH₄/year

Pniowek V Pniowek IV Borynia IV Brzeszcze IX Zofiowka V

Pniowek V

Gaussian plume model

$$C(x,y,z) = \frac{Q}{2\pi u \sigma_y \sigma_z} e^{-\frac{1}{2} \left(\frac{y}{\sigma_y}\right)^2} \left[e^{-\frac{1}{2} \left(\frac{z-H}{\sigma_z}\right)^2} + e^{-\frac{1}{2} \left(\frac{z+H}{\sigma_z}\right)^2} \right]$$

- C: concentrations. g/m³
- u: mean wind speed. m/sec
- Q: emission rate. g/sec
- H: effective stack height
- σ_y : standard deviation of plume concentration distribution in ydirection
- σ_z : standard deviation of plume concentration distribution in zdirection

Stability Class D (rural):

 $\sigma_{y} = 0.085x / \sqrt{(1 + 0.0001x)}$ $\sigma_{z} = 0.059x / \sqrt{(1 + 0.0015x)}$

Emission estimates using the Gaussian plume inversion

Quantified Emission rates of Pniowek V shaft

- Mass balance vs. Gaussian plume inversion
 - An average difference of 1.2 kton CH₄/year
- Variations in the estimates for different days
 - Verification of the inventory estimates at high temporal resolution

Emissions of different shafts

Shaft	Current inventory	Mass balance approach	Gaussian inversion
#1	20.6	10.8 ± 5.1 (N = 10)	12.1 ± 3.5 (N = 15), Min - Max: 4.5 – 29.5
#2	20.6	2.5 ± 1.2 (N = 3)	3.1 ± 0.8 (N = 8), Min - Max: 0.9 – 10.5
#3	5.6	5.6 ± 3.0 (N = 1)	5.2 ± 1.4 (N = 7), Min - Max: 2.4 – 10.2
#4	10.05	1.9 ± 0.7 (N = 1)	3.5 ± 1.2 (N = 4), Min - Max: 1.1 – 11.7
#5	9.63	9.5 ± 3.7 (N = 2)	7.8 ± 2.1 (N = 3), Min - Max: 5.2 – 9.3

$\delta^{13}C$ and $\delta^{2}H$ of various shafts

Application III: Quantification of N₂O and CH₄ Emissions using nighttime profiles at the Cabauw tower

•
$$F_{Eddy} * V_m = \overline{\dot{w}\dot{c}} = K_C \frac{dc}{dz} K_C$$
: the

eddy diffusivity

•
$$H = \rho_{Air} C_p K_T \frac{dT_{pot}}{dz}$$
 H: sensible heat

flux measurements

Assuming:

The same turbulent exchange coefficients for heat, water vapor and other trace gases.

•
$$K_C = K_T$$
 $F_{Eddy} = \frac{H}{C_p M_{Air}} \frac{\frac{\partial c}{\partial z}}{\frac{\partial T_{pot}}{\partial z}}$

Poster: Xin Tong

 $F_{CH4} = \int_{0}^{Z_{r}} \frac{1}{V_{m}} \frac{\partial \bar{c}}{\partial t} dz + \frac{1}{V_{m}} \cdot \overline{\dot{w}\dot{c}} (Z_{r}) + \dots$ Storage Turbulence

Conclusions and discussion

- UAV-based Active AirCore provide 3D highprecision CH₄ measurements
- Good agreement between Mass Balance Approach and Gaussian plume Inversion Approach
- Potentials
 - Multiple drones
 - Combine with tracer ratio methods
 - Multiple species measurements