The Ruisdael station Lutjewad - infrastructure developments and recent results

U. Dusek¹, H. Chen¹, H.A.J. Meijer¹, H.A. Scheeren¹, L. Nguyen¹, R. Stratingh¹, C.M.H. Unal², H.W.J. Russchenberg²

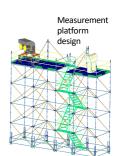
¹Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen, University of Groningen

² Department of Geoscience and Remote Sensing, Faculty of Civil Engineering and Geosciences, Delft University of Technology

Lutjewad: Location and Facts

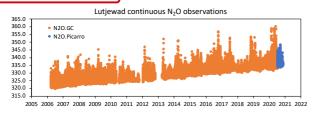
Facts:

- Coastal location
- · ICOS class 2 station
- 60m measurement mast
- 15+ year record of GHG measurements
- CO₂ isotopes
- O₂/N₂ record


New Ruisdael Aerosol-Cloud Infrastructure

Aerosol In-situ Measurements:

- · Infrastructure realized
- Instruments delivered and in final testing phase
- Measurments to begin in May 2021


Cloud profiler:

- · Delivered Dec 2020
- Measures on the ground Dec-Jan
- To be installed on a 10 m-platform in May 2021

RECENT RESEARCH HIGHLIGHT: N2O

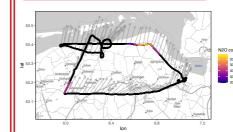
Methodology:

N₂O measurement methods:

Lutjewad continuous N_2O observations from May 2006 onwards. Since September 2020 the GC-system has been replaced by a Picarro Cavity Ring-Down Spectrometer (model G5310) providing high resolution and high precision observations.

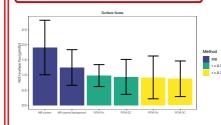
N₂O Flux determination:

Mass balance (MB) method:


Estimate fluxes from point or area sources by a Picarro Analyzer in combination with an active AirCore using the conservation of mass principle (1). The concentration within the plume of a N_2O source is compared to the N_2O concentration outside of the plume (defined as background). From this, the flux is calculated assuming constant horizontal wind, stable boundary layer (PBL) and the estimated PBL hight.

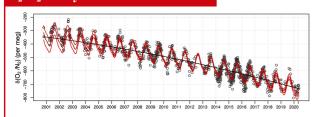
Radon tracer method (RTM):

The Radon Tracer Method (RTM) uses the correlation between the Rn-222 activity and a trace gas mole fraction in the atmosphere during stable conditions to estimate trace gas fluxes, in this case $N_2 O$ (2).


Results and Discussion:

MB approach for Groningen city plume:

- Applied to one case study (18 August 2021)
- Flight path through the Groningen city plume
- N₂O concentrations elevated downwind
- Flux estimated from concentration difference


Comparison of RTM and MB methods:

- RT methods applied to various plumes Aug 2021
- MB method slightly higher estimate, but still within unceratinty range
- MB limited to a single case study, RT several plumes

blue: MB method with 2 different ways of estimating the background green: RT method for all plumes with radon-N2O corrleation coef r > 0.7 yellow: RT method for plumes with r > 0.7 for BOTH Picarro (Pic) and GC

$O_2/N_2 - 20$ year record

Methods

 O_2 is measured with the DI-IRMS Optima at CIO, expressed in $\delta O_2/N_2$ - which is the difference between the O_2/N_2 ratio of the sample and that of a reference gas:

$$\delta O_2/N_2 = \frac{O_2/N_2(sample)}{O_2/N_2(ref)} - 1$$

Results

- average trend: -20.8 +- 0.6 per meg yr¹ seasonal amplitude: 131.8 +- 4.3 per meg
- The $\delta O_2/N_2$ record shows an increasingly more negative trend over time
- This confirms the fact that the global oxygen level is decreasing over time due to fossil-fuel burning (since O₂ is used to combust carbon to CO₂)

References

(1) Mays, K. L., et al. (2009). Environmental Science and Technology, 43(20), 7816–7823. (2) Wilson, S. R., et al. (1997). Journal of Atmospheric Chemistry, 26(2), 169–188. **Acknowledgements:** We thank Jan Mulder and Bert Kers for their role in the implementation of the aerosol and cloud infrastructure

university of groningen

centre for isotope researc