Ruisdael Science Day - Monday 30.09.2024

CO₂ plume dispersion simulated at hectometer scale: DALES formulation and observational evaluation

<u>Arseniy Doyennel¹</u>, Bart van Stratum², Fredrik Jansson³, Hugo Denier van der Gon⁴, Jordi Vilà-Guerau de Arellano², Margreet van Zanten⁶,

Romuald te Molder⁶, and Sander Houweling^{1,5} ¹Department of Earth Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands ²Department of Meteorology and Air Quality, Wageningen University & Research, Wageningen, the Netherlands ³Faculty of Civil Engineering and Geosciences, Department of Geoscience and Remote Sensing, Delft University of Technology, Delft, the Netherlands ⁴Department of Air Quality and Emissions Research, TNO, 3584 CB Utrecht, the Netherlands ⁵SRON Netherlands Institute for Space Research, Utrecht, the Netherlands

⁶National Institute for Public Health and Environment (RIVM), Bilthoven, the Netherlands

High-resolution simulation of CO₂ emissions in the Netherlands

Dutch Atmospheric Large-Eddy Simulation (DALES)

Advaitatiges:

- High verdigite menes on grid-scale computational power of your owner of the power of the flow
 Attesting of the power of th
- Highly accurate emission input is required! Why DALES?

Sikma (2014)

Total water specific humidity

GENINGEN TUDelft VU VIJE UNIVERSITEIT RU

Emission data

Annual National Emission Inventory

(Collected and processed by RIVM)

Classified into groups according to the Standard Nomenclature for Air Pollution (SNAP).

Types of Data:

1.Point Sources (from industry):

1. Can be used in DALES as the location is exactly available. Vertical allocation is required!

2.Gridded Area Emission Data:

- 1. Available on km-scale resolution.
- 2. Too coarse for DALES; downscaling is required!

To justify the high resolution of DALES, we need emissions to be aligned to DALES spatiotemporal resolution and vertically allocated!

This study addresses three main objectives:

Develop the downscaling emission workflow to prepare emission inventories for realistic urban-scale simulation of CO_2 emissions.

Enhance the DALES model to simulate anthropogenic point sources and area-based CO_2 emissions, as well as CO_2 exchange with biosphere.

Evaluate the developed framework against in-situ observations and LOTOS-EUROS with prescribed turbulence to demonstrate the benefits of 100mscale simulations via LES.

Before Refinement

Proxy data

After Refinement

 10^{-1} 10^{-1} 52.3°N 52.3°N 52.3°N (f)(d) (e) 10¹ g[×] **10**^{−3} _o 52.25°N 52.25°N 52.25°N 10^{-3} 4.8°E 4.9°E 5.0°E 4.8°E 4.9°E 4.9°E 5°E 5°E **4.8°E** 03 indust. combust. Illustration of spatial redistribution of annual CO₂ area emissions (kg

- 04 indust. process. - 05 extract./distr. fossil m^{-2} yr⁻¹) from a coarse resolution of 1x1km to a finer resolution of

100x100m

1. Downscaling emission workflow

Example of total static CO_2 emissions at 100m resolution:

VRIJE UNIVERSITEIT AMSTERDAM

7 Thursday, October 31, 2024

2. DALES extensions to simulate CO₂ emissions

a) Veotical halogation of osphere emissions:

Erands Surface Medel Sounded to DALES includes A-gs (net CO₂ assimilation rate (A) stomatal conductance (gs)) model (Ronda et al., 2001) to simulate net CO₂ para meters and atmospheric resplitions and assimilation (protosynthesis) B9 b7aanahd Advingsu(nota 3D get 2018).

Model experiment setup

Lathernal Boundary conditions (periodic):

- Meteorology: HARMONIE-AROMA weather forecast
- background CO₂ levels: CAMS reanalysis (6-houly)

Period of simulation: 25-28 June 2018

Four distinct model tracers:

- 1. CO2BG: background concentration only.
- **2. CO2BG_EMISS**: **CO2BG** + anthropogenic emissions.
- **3. CO2BG_EMISS_RESP**: **CO2BG_EMISS** + net soil respiration.
- **4. CO2_SUM**: the sum of CO2BG, CO2EMISS, CO2RESP, including the net CO_2 assimilation (CO2PHOTO).

Results of simulation: diurnal cycle of near-surface CO₂

Model evaluation

- Three measurement sites:
- ICOS Cabauw tower (51.971 °N, 4.927 °E) :

F & F

Cabauy

Westmaas

Slufter

- four heights: 27, 67, 127, and 207m
- Near-ground TNO measurements:
- 2. Westmaas (51.79°N, 4.45°E) (urban area)
- 3. Slufter (51.9461°N, 4.048°E) (North sea shore)
- State-of-the-art LOTOS-EUROS CTM

Evaluation against Westmaas and Slufter measurements

Model	CO ₂ Measurement	MBE	RMSE
WESTMAAS	CO ₂ sum	-0.63	4.13
	CO ₂ bg	-4.53	9.55
	LOTOS-EUROS CO ₂	0.85	5.63
SLUFTER	CO ₂ sum	3.14	15.03
	CO ₂ bg	-10.39	16.74
	LOTOS-EUROS CO ₂	-1.50	12.33

VRIJE UNIVERSITEIT AMSTERDAM

Evaluation against Westmaas and Slufter measurements (excluding night-time periods)

Perspectives on LES development towards the simulation of chemical species emissions

Increasing the spatial res of simulation (<100m)

Evaluation of NFF fluxes

Vertical allocation of emissions (stack heights, plume parameters) prescribe a heat source at the chimney top?

Downscaling of emission inventory in space and time

and refinement using proxy data. Unsertanties?

Shift from Periodic to non-paramentric open boundaries

Topograthy, forest maps and urban area landscapes in LES

Updating atmospheric dynamic in LES (night time stable condition issue)

Advance chemical sheme (gas-phase + heterogeneous + how chemistry be affected if resolution change?

LES ensemble experiment within unsertanty of emissions

Conclusions

- A new simulating platform (downscaling emission workflow + DALES extensions) aims at calculating spatiotemporal CO₂ concentration variability at 100m resolution has been developed.
- The main novelty is to calculate upward CO₂ fluxes in the Netherlands with the turbulent mixing and transport explicitly by means of the LES.
- The validation against in-situ observations and LOTOS-EUROS CTM demonstrates the improvements and current limitations of incorporating explicit turbulence in highresolution CO_2 emission modeling.

For more information, please contact me at: a.doyennel@vu.nl

For more general information on the Ruisdael Observatory: www.ruisdael-observatory.nl

DALES model code: https://github.com/adoyenne/dales ruisdael emission new.git

Emission workflow: https://github.com/ruisdaelobservatory/ghg_emission_inventory_workflow.git

Thank you for your attention! Any **Ruisdael** observatory questions?

en Milieu

NWC

Rijksinstituut voor Volksgezondhei Ministerie van Volksaezondhe

