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ABSTRACT

The Earth Clouds, Aerosol and Radiation Explorer
(EarthCARE) is a combined ESA/JAXA mission to be
flown in 2013. In this work, a potential FeatureMask
algorithm for the EarthCARE high spectral resolution li-
dar is discussed which was developed within the ESA
sponsored CASPER study. A feature mask identifies
’significant return’ in the lidar signal. It does not specify
the nature of the feature. In order to be able to derive
reliable extinction and backscatter profiles, as well as
a target classification, which specifies the nature of the
feature (ice cloud, liquid cloud or aerosol layers etc.); an
accurate feature mask is essential.
The algorithm relies on image reconstruction tech-
niques and not on signal to noise ratios and thresholds
only. The algorithm and results for a number of different
scenes including ice clouds, liquid clouds and aerosol
layers will be presented.

1. INTRODUCTION

The Earth Clouds, Aerosol and Radiation Explorer
(EarthCARE) is a combined ESA/JAXA mission to be
flown in 2013. EarthCARE will study the spatial (3D)
distribution of clouds and aerosols and their impact on
the Earth’s radiative balance. To do this, the Earth-
CARE platform will carry a combination of active (a high
spectral resolution lidar and Doppler radar) and passive
sensors (Multi spectral imager (MSI) and Broad Band
Radiometers (BBR).
In this work, a potential feature mask algorithm for the
EarthCARE high spectral resolution lidar (ATLID) is dis-
cussed which was developed within the ESA sponsored
CASPER study. A feature mask identifies ’significant
return’ in the lidar signal. It does not specify the na-
ture of the feature. In order to be able to derive reliable
extinction and backscatter profiles, as well as a target
classification, which specifies the nature of the feature
(ice cloud, liquid cloud or aerosol layer etc.); an accu-
rate feature mask is essential. As the signal strength
of aerosol or very optically thin ice clouds on the sin-
gle shot grid can be comparable to the expected ATLID
noise levels it was chosen to rely on image reconstruc-
tion techniques and not on signal to noise ratios and
thresholds only. The main reason why an image recon-
struction technique can be so effective for the Earth-
CARE lidar data is that in principle the ATLID Mie chan-
nel receives only particle backscatter, background noise

and noise due to the Mie-Rayleigh cross-talk. It also en-
sures the derivation of a feature mask on the single shot
resolution instead of directly going to a lower horizontal
resolution of 1km. This enables both the use of variable
masks, e.g. use only those profiles which are sure to
have no clouds to derive the mean aerosol signals and
calculation of feature fractions which can result in a bet-
ter determination of higher order L2a and L2b products.
The algorithm and results for a number of different
scenes, both simulated and Calipso measurements, in-
cluding ice clouds, liquid clouds and aerosol layers will
be presented.

2. ALGORITHM DESCRIPTION

The lidar used by EarthCARE (ATLID) has a high-
spectral-resolution type design. That is, the contribu-
tion to the return signal from the thermally broadened
Rayleigh return and spectrally narrow elastic backscat-
ter return (Mie) are separated. Thus, in principle, the ex-
tinction profile at the lidar wavelength along with the cor-
responding backscatter profile may be independently
derived. Before this can be performed a feature mask
needs to be created as an input to the extinction re-
trieval algorithm. The Mie signals are separated by a
Fabry-Perot etalon. Due to this configuration, there is
a large noise component in both the Mie and Rayleigh
channels, dubbed as cross-talk. Cross-talk is Mie signal
which ends up in the Rayleigh channel and vice versa.
The cross-talk hampers more general methods purely
based on signal to noise ratios. These are still possible
for the ATLID signals but will only enable the masking of
very high signals and therefore very optically thick ice
clouds and water clouds. In most cases it will not be
able to mask aerosol layers on a shot-by-shot basis.
Two methods are employed to retrieve the feature mask:
the median-hybrid method [1] and the maximum entropy
[2] method, both using the signal detection probabilities.
Based on these two methods, coherent structures can
be defined and features with a low signal to noise ratio
can be distinguished from the noise only signals. Both
routines implicitly use horizontal and vertical neighbor
information to define structures. The choice for the use
of the two methods is based on the specific benefits
each of them have. The median-hybrid method is par-
ticularly good at finding coherent features while keeping
edges constant (no smoothing effects beyond the fea-
tures). The maximum entropy method adopted here
convolves the data iteratively until a good balance is
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found between smoothing of noisy features while still
remaining a good comparison to the original data. Note
that both methods assume that particle features are
not single point events. Events of this nature would be
missed by this algorithm. Future datasets should help
to indicate if this would lead to a large set of missed
events. In the following subsections the general de-
scription and use of the methods/calculations is given.

2.1. Median Hybrid Method

The hybrid median filter checks the entire image, pixel
by pixel, using an n∗n filter, where n is an odd integer
of 5, 7 or 9. The center pixel is calculated using the two
diagonals, the horizontal and vertical rows within this
box. For each of the rows the median value is calcu-
lated, after which the median value of these four me-
dian values is taken. As this latter median is from an
even number we take the third value of the sorted array
(not the mean of two values in the center). The algo-
rithm is very effective in removing single noise events
and filling gaps. The median hybrid algorithm is run it-
eratively five times to ensure that the image has con-
verged, e.g. there are no more changes in the image
between this iteration and the next. As only median
values are used, there are no smoothing edge effects.
The only coherent structures which will not be detected
this way are structures with a vertical or horizontal width
of 1 or 2 pixels. Particularly horizontal stretched struc-
tures are at risk here as high optically thick water clouds
(stratus or cumulus) may yield only 2 pixel thick clouds
before the backscatter is completely reduced. To keep
these important structures within the mask the hybrid
median technique is used in a slightly altered version
by using an n∗3 box ensuring that also features of only
two pixels thick, e.g. water clouds, are detected. The
two masks are compared and only those additional fea-
tures in the n∗3 hybrid median results are added to the
feature mask.

2.2. Maximum Entropy Method

With the main features found the next step is to find
structures within the noisy part of the image. For this
we use the original Mie signal probability data (Pmie)
with all previously detected features set to 0. The
method used to find the remaining features is a maxi-
mum entropy image restoration scheme[2]. The maxi-
mum entropy method selects that particular feasible im-
age, from a large number of possible representations
of the true image, which has the greatest entropy (E),
taking into account the chi-square (χ2) difference. This
constrained maximum of E will be at an extreme of
E−λχ2 for a suitable Lagrange multiplier λ. The entropy
of a probability distribution is a measure of the informa-
tion content and can be defined as

E = −
∑

[Pilog(Pi)], (1)

With Pi (>0) the normalized probability in pixel i and∑
Pi=1. Next to the entropy there is also the (χ2) for

any retrieved image compared to the actual measured

data, given by

χ2 =
∑ (Di − Ii)

2

σ2
i

. (2)

This ’misfit’ is represented by a single number depend-
ing on the original input probability data (Di=Pmie[Hyb.
Med Features=0]), the standard deviation in Di (σi) and
the probability data retrieved after a mathematical pro-
cedure to the data (Ii)
As the most obvious features are already detected and
only a noisy image remains a very simple version of
the MEM is used to check for more coherent features
within the noise. In this case the different images are
calculated by iteratively convolving the previous image
with the following convolution kernel 1 1 1

1 8 1
1 1 1


starting with the input dataDi. The kernel is normalized
to ensure no signal loss when performing the convolu-
tion. For each of these images the E and χ2 differences
are calculated and compared to each other. When the
optimum entropy probability image is retrieved, it is sub-
sequently checked for its signal characteristics. From

Figure 1. Two ECSIM examples. Left column
shows a test scene with an ice cloud, liquid cloud
and aerosol layer. The right column a LES simu-
lated cumulus case with aerosol layer. For each
example. Top: Slice of the extinction through
the ECSIM scene. Center: ATLID simulated Mie
channel signals. Bottom: Retrieved feature mask.

the optimal image the detection probability histogram is
calculated. This histogram depicts the number of pix-
els within a probability bin. The histogram consists of
two major parts, a Gaussian like peak representing the
noise and an excess to the Gaussian signal due to co-
herent features.

3. RESULTS
The algorithm results are presented using two types of
scenes. First, results from the EarthCARE simulator
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and second using Calipso measurements. The Calipso
instrument has both signals at 532 and 1064nm. As
this algorithm was designed to work for the Mie chan-
nel of an HSRL lidar it expects no coherent back-
ground signals, especially non-uniform. As the molec-
ular backscatter in the 532nm channel is evidently
present and has a strong height/pressure dependence,
the signal is in principle not suited for this algorithm. In
the 1064nm channel the molecular signal is negligible
and it is therefore the best possible signal from a satel-
lite for testing the algorithm. The only drawback of this
choice is that aerosol signals will also be smaller in this
channel, which will result in a non-detection of layers as
is visible in one of the examples.

3.1. EarthCARE simulator examples

The algorithm was developed using scenes and results
from the EarthCARE simulator, to best mimic the to be
expected ATLID signals and noise levels. The first test
case is presented in Figure 1 (left column). The scene
itself consists of three particle regions. An ice cloud,
with an optically thin and optically thick part, a water
cloud and an aerosol layer up to 2 km. The results
are presented in three plots: First the extinction slice
through the scene as was created in the EarthCARE
simulator (the model truth); Second the detection prob-
ability between 0 (white) and 100 % (red) for the Mie
channel and third the feature mask as was derived from
the signals (black; no signal, purple; molecular; blue
colors are derived using the max-entropy method, green
& orange colors come from the hybrid median method).
The second ECSIM case (Figure 1; right column) is
based on a LES study by H. Barker, using the same
color schemes. In this case cumulus clouds are present
with cloud top roughly at 2.5 km and an aerosol layer
throughout the entire scene with the same maximum al-
titude. The very optically thick clouds are not completely
penetrated by the lidar, visible by the small vertical ex-
tent in the synthetic ATLID signals and the lack of sig-
nals below some of the clouds. The clouds themselves
are well defined in the feature mask by the hybrid-
median method. The aerosol layer is detected using the
maximum entropy method for the entire regime. There
are two small mis-identifications above 2.5 km height
beyond 11 km along track. A more thorough look at
the precise Gaussian fit to the histogram data may re-
sult in a better fit of the features for this particular case.
Both examples in Figure 1 show that the to be expected
measurements from ATLID will be noisy but, with an al-
gorithm as described here, all features can be identified
as long as the signals are not completely extincted.

3.2. Calipso 1064nm examples

As the algorithm is intended to look at lidar data from
space it is appropriate to test it with available lidar data
from space. As discussed above, the 1064nm CALIOP
channel is the best data stream to check the algorithm
, due to its lack of molecular backscatter. The vertical
resolution of the CALIOP data changes at two points at
≈8 and ≈19 km. The current version of the algorithm

works only using single vertical and horizontal resolu-
tions throughput the scene. This was deliberately cho-
sen as a change in resolution will alter the noise behav-
ior from one to the other regime. In all the scenes shown
below each of the vertical resolution regimes has been
treated separately. This means that there has been no
contact between the signals above and below the reso-
lution change. As the Calipso data is different from the
ECSIM ATLID data the maximum entropy convergence
criterium was not been enabled for these examples, in-
stead the maximum entropy mask is retrieved using the
20th convolved iteration.
In the first Calipso scene (Figure 2) one can clearly dis-
tinguish an ice cloud and different aerosol layers with a
lot of noise in the latter regime. Most of the ice cloud re-
sides in the second vertical resolution regime with only
the lower parts extending into the lowest regime.

Figure 2. Comparison of the two masks for an
ice cloud and aerosol scene. Top panel: Part of
the measured 1064nm backscatter signal. Center
panel: corresponding atlid-featuremask and bot-
tom panel: VFM-target classification

Note that the vertical axis of the raw data image goes
up to 25 km while both feature masks go up to 17
km. The atlid-featuremask has values between -2 and
10, where -2 is subsurface (black), -1 no data (pur-
ple; not indicated here), 0 most likely molecular (blue)
and 10 most likely particles (red). Shown are the re-
trieved features with values 6 to 10 indicating that the
backscatter originated likely to most likely from parti-
cles. A horizontal line indicates the height at which the
resolution changes. The VFM mask[3] (clouds:green,
orange:stratospheric features, aerosols:yellow, molec-
ular:blue, no data:purple and surface:black) and atlid-
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featuremask show very similar results at first glance
but when looking in detail show some significant differ-
ences.
The ice cloud in the upper regime was found directly
with the median hybrid routine, visible by both the large
mask values and the sharpness of the edges (no visible
smoothing compared to the VFM mask). The lower part
of the ice cloud is also detected in the lower regime. The
aerosol detections in the lower left part is more patchy
compared to the VFM mask, but seems justifiable when
looking at the 1064nm raw data. On the right part the
atlid-featuremask clearly distinguishes the two layers as
is seen in the data. The VFM mask fills in nearly the en-
tire area. This is most likely due to the way the VFM
masks is created by the smoothing needs to distinguish
the different targets. One of the main differences be-
tween the two masks is that the VFM mask is based
mostly on the 532nm data and the atlid-featurmask on
the 1064nm data. The goal of the atlid-featuremask is to
identify at which points the backscatter signal is due to
particles and which is due to noise and therefore molec-
ular, it actually wants to make the distinction on an as
high as possible resolution. The VFM mask is one step
further down the retrieval chain in the sense that it is a
target classification mask, e.g. separating clouds and
aerosols from each other. It therefore needs to smooth
more of the data to retrieve reliable signals to distinguish
between the different target types.
A final example is given of a scene where the two
masks show very different results (Figure 3). The atlid-
featuremask and VFM mask show very different results
above roughly 8 km, with the latter showing extended
features not retrieved by the atlid-featuremask. Be-
low 8 km the features look very similar with a num-
ber of liquid and mixed phase clouds. Again the atlid-
featuremask shows sharper transitions mostly due to
the use of the median-hybrid method compared to a
smoothing method as is used for retrieving the VFM
mask. The non detection of the upper layer is caused
by an elevated aerosol layer which is nearly completely
missed by at 1064nm (left upper panel) while it is ob-
viously there in the 532nm channel (lower left panel)
and would have been easily detectable if a similar sig-
nal had been available in 1064nm signals. There is
a hint of the lowest of the two layers (between 8 and
11km) in the 1064nm channel and when checking the
atlid-featuremask in more detail the layer was retrieved
as 4 and 5, indicting between likely molecular and un-
known, but so are a large number of other pixels. If
anything, the comparison shows the benefit of going to
lower wavelength. Similar layers will immediately show
up with the ATLID 355nm Mie signals.

4. CONCLUSIONS

A new FeatureMask algorithm for the ATLID lidar signals
has been constructed adopting image reconstruction
techniques. The use of these techniques are based on
the HSRL configuration of the ATLID lidar, which sepa-
rates the Mie and Rayleigh signals. This leads to a Mie
channel with only particle backscatter and additional

Figure 3. Comparison of the two masks for a
cloud and aerosol scene Top left panel: Measured
1064nm backscatter signals. Top right panel: cor-
responding atlid-featuremask, bottom left panel:
532nm signal of the same area and bottom right
the VFM-target classification. Note the two ele-
vated layers seen at 532nm and not at 1064nm,
giving rise to the main differences in the two
masks

noise. Both the mask and signals can be downscaled
to lower resolutions when a higher signal to noise is
needed. The high resolution atlid-featuremask can both
be used to choose which signals should be combined
and can be used as a feature fraction to combine only
relevant profiles. The lower resolution mask and feature
fraction can be used for all higher order products which
need the backscatter signals.
The algorithm has been tested using both EarthCARE
simulator data, for which it was originally built and the
1064nm Calipso data which resulted in a very good
comparison with the standard VFM target classifica-
tion and eye-fitting of the raw data. The algorithm will
be worked on in the coming ESA sponsored ATLAS
project, where it will be further refined and optimized.
Future tests should include ground based and/or aircraft
HSRL data and ADM data (when available).
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